Estimating Parameters Associated with Monotone Properties

نویسندگان

  • Carlos Hoppen
  • Yoshiharu Kohayakawa
  • Richard Lang
  • Hanno Lefmann
  • Henrique Stagni
چکیده

There has been substantial interest in estimating the value of a graph parameter, i.e., of a real function defined on the set of finite graphs, by sampling a randomly chosen substructure whose size is independent of the size of the input. Graph parameters that may be successfully estimated in this way are said to be testable or estimable, and the sample complexity qz = qz(ε) of an estimable parameter z is the size of the random sample required to ensure that the value of z(G) may be estimated within error ε with probability at least 2/3. In this paper, we study the sample complexity of estimating two graph parameters associated with a monotone graph property, improving previously known results. To obtain our results, we prove that the vertex set of any graph that satisfies a monotone property P may be partitioned equitably into a constant number of classes in such a way that the cluster graph induced by the partition is not far from satisfying a natural weighted graph generalization of P. Properties for which this holds are said to be recoverable, and the study of recoverable properties may be of independent interest. 1998 ACM Subject Classification G.2.2 Graph Theory

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS

We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...

متن کامل

Shape constrained kernel density estimation

In this paper, a method for estimating monotone, convex and log-concave densities is proposed. The estimation procedure consists of an unconstrained kernel estimator which is modified in a second step with respect to the desired shape constraint by using monotone rearrangements. It is shown that the resulting estimate is a density itself and shares the asymptotic properties of the unconstrained...

متن کامل

Smoothed Rank Regression With Censored Data

A weighted rank estimating function is proposed to estimate the regression parameter vector in an accelerated failure time model with right censored data. In general, rank estimating functions are discontinuous in the regression parameter, creating difficulties in determining the asymptotic distribution of the estimator. A local distribution function is used to create a rank based estimating fu...

متن کامل

Estimation of a K − Monotone Density , Part 1 : Characterizations , Consistency , and Minimax Lower

Shape constrained densities are encountered in many nonparametric estimation problems. The classes of monotone or convex (and monotone) densities can be viewed as special cases of the classes of k−monotone densities. A density g is said to be k−monotone if (−1)g is nonnegative, nonincreasing and convex for l = 0, . . . , k−2 if k ≥ 2, and g is simply nonincreasing if k = 1. These classes of sha...

متن کامل

Application of Decline Curve Analysis for Estimating Different Properties of Closed Fractured Reservoirs for Vertical Wells

In this paper, decline curve analysis is used for estimating different parameters of bounded naturally fractured reservoirs. This analysis technique is based on rate transient technique, and it is shown that if production rate is plotted against time on a semi-log graph, straight lines are obtained that can be used to determine important parameters of the closed fractured reservoirs. The equati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016